Comparison of a Virtual-Reality Perimeter to Standard Humphrey Visual Field in Normal Children

Sylvia L. Groth, MD; Edward F. Linton, MD; Eric N. Brown, MD, PhD; Frini Makadia, MD; Sean P. Donahue MD, PhD
1. Vanderbilt University Medical Center, Department of Ophthalmology; 2. Ohio State University, Department of Ophthalmology

Introduction
Perimetry in children is an invaluable modality for assessing afferent function. Current threshold perimeters demonstrate relatively poor reliability and satisfaction. The Olleyes VisuALL (OV) is a commercially available video-game based automated static threshold perimeter that uses a Virtual Reality headset, and a wireless remote.

Methodology
- 50 normal subjects ages 9-17 (mean=13 years, 50% female)
- Performed Humphrey Visual Field (HVF) 24-2 and Olleyes VisuALL pediatric threshold perimetry.
- Test time, reliability parameters, and effects of age, gender, and ethnicity were evaluated.
- Normative threshold sensitivities were established by percentile.
- Mean inter-subject variability measured by Gini’s Mean Difference
- Patient satisfaction surveys were administered
 - 1-5 scale, Wilcoxon matched-pairs signed rank test

Results

Patient satisfaction scores favored the OV device experience (p<0.01).

Geographic effects on sensitivity and variability were concentric in the HVF as expected, and overall flatter and more sporadic for the OV.

We were unable to detect any effect of gender or ethnicity.

Attention to the task has long been a challenge in pediatric visual field testing. This game-based perimeter has higher patient satisfaction as well as tight correlation to the standard of care perimeter. Direct comparison of the two demonstrates less variability and tighter thresholds with the portable instrument which should translate into better ability to detect defects. The portability of the test allows it to be done in myriad environments lending to flexibility that can benefit children.

This commercially available head-mounted perimeter can be used reliably in children and is associated with higher patient satisfaction than HVF. A normative dataset is now available and the device can be used in clinic, hospital, or home settings.

Conclusion

References

Acknowledgements
Funded in part by an AGS MAPS grant to SLG. Funded in part by an unrestricted grant to the VUMC Department of Ophthalmology and Vision Sciences by Research to Prevent Blindness